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ABSTRACT 

Auditory-display research has had a largely unsolved challenge 
of balancing functional and aesthetic considerations. While 
functional designs tend to reduce musical expressivity for the 
fidelity of data, aesthetic or musical sound organization 
arguably has a potential for representing multi-dimensional or 
hierarchical data structure with enhanced perceptibility. 
Existing musical designs, however, generally employ 
nonlinear or interpretive mappings that hinder the assessment 
of functionality. The authors propose a framework for 
designing expressive and complex sonification using small 
timescale musical hierarchies, such as the harmony and timbral 
structures, while maintaining data integrity by ensuring a close-
to-the-original recovery of the encoded data utilizing 
descriptive analysis by a machine listener. 

1. INTRODUCTION

The long-standing dilemma in data sonification research 
between functional and aesthetic approaches suggests the 
difficulty of simultaneously achieving an accurate conveyance 
of information and a complexity or expressivity of the sound 
output. As functionalists tend to eliminate unnecessary 
elements in sonification while aesthetic proponents often 
interpret data subjectively or employ external information for 
a "metaphorical" mapping [1], finding a middle ground 
between them seems challenging. Besides such arbitrariness in 
mapping decisions, many musical sound organization 
principles, such as scaling and quantization of the pitch and 
time, typically require non-linear transformation of data that 
may result in the loss of information. Despite these challenges, 
music, as organized sound [2], arguably possesses a potential 
for multi-dimensional mapping of data optimized for human 
perception with unique hierarchical sound organizations. We 
investigate the possibility of this multi-dimensional and 
higher-order expression for data sonification with enhanced 
perceptibility while acknowledging the risk of information 
loss. 

1.1. Musical Structures 

The concepts of musical structures are extensive and differ 
amongst music theories, compositional styles, and musicology 
or music information retrieval (MIR) research. In the most 
ordinary case with western symbolic notation, a musical event, 

for example an onset, may have pitch, volume, timing, 
duration, and timbre as parameters. The pitch may have 
higher-level structures including harmony, scale, or melodic 
patterns, while the volume and timing may contribute to the 
forming of timbre or rhythm. Such hierarchical relationships 
are not limited to particular styles of music such as Western 
classical music, but, as analyzed by Roads [2], may apply with 
varying degree to any aesthetic sound expressions as they all 
derive from a single time-domain acoustic phenomena. 
Musical structures may also derive from, besides the level of 
time resolution, various non-linear data transformations such 
as scaling (e.g., in range and distribution), quantization, 
alignment of continuity or discontinuity, dichotomous 
balances such as repetition and variation, tension and release, 
and noisiness and tonality. In this paper introducing our initial 
version of the framework, we limit the focus of musical 
structures to smaller time-scale hierarchies centered around a 
common musical event (i.e., note) in relation to the frame-
level spectral analysis employed in the assessment of data 
integrity.   

1.2. Evaluation Frameworks 

A major problem in incorporating expressive or aesthetic 
techniques in sonification design is the general lack of ways to 
ensure the data transmission in a quantifiable manner. Many 
existing evaluation attempts with aesthetic sonification are 
high-level subjective listening tests that are inevitably 
influenced by subjective listener preferences and by listener 
fatigue. In the proposal of Sonification Evaluation eXchange 
(SonEX) [3], Degra et al. discuss the importance of quantified 
measurements such as accuracy, error rates, reaction speed, 
and precision measures. However, even though SonEX 
provides a framework for standardized and reproducible 
experiments, it does not present cases for how to actually 
measure the accuracy and error rates in a complex sonification. 
Another evaluation scheme, called multi-criteria decision aid, 
proposes quantitative measurement of the design features, 
such as clarity, complexity, and amenity, in various 
sonifications [4]. These evaluation schemes put weight on 
defining a community-based environment for comparative 
testing of new sonification designs. However, there seems to 
be few attempts in objective measurements within a single 
aesthetic sonification system. While subjective listening tests 
and statistical analysis may reveal individual mapping patterns 
with perceptual increase or decrease, it is not practical to test 
the extensive hierarchical relationships in an expressive 
sonification against varying data sources. Our framework, 
therefore, focuses on assessing the minimization of 
measurable loss of information in the process of musical 
mapping and transformation. Instead of extending the existing 
qualitative evaluation methods, we propose the introduction of 
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a machine-listening element, found in speech recognition and 
MIR [5][6]. Although this study does not directly address the 
measurement of the perceptive quality of musically-structured 
sonification, which is still of great importance, using the 
techniques employed in speech recognition or MIR allow for 
quantitative measurements that are often modeled around 
human auditory perception [7] such as tonality and noisiness 
measurements [6]. MIR also works directly on complex and 
multi-dimensional sound organizations (i.e., music), which is 
suitable for the musically-complex (e.g., polyphonic, 
spectrally rich) sonifications that we hope to achieve. Our 
experiments reported in this paper employ the most 
deterministic techniques in the encoding and decoding 
processes to achieve the retrieval of the data. 

1.3. Sonification Frameworks 

For designing functional-aesthetic sonification with an 
information-fidelity evaluation, we propose a framework with 
structural analysis and mapping as well as frequency-domain 
parameter encoding and decoding processes. We call this 
framework spectral parameter encoding (SPE) for musically 
expressive sonification. 

SPE draws insights from prominent sonification 
frameworks such as parameter mapping sonification (PMS or 
PMSon) [8], model-based sonification (MBS) [9][10], and 
audification [11]. With many overlapping strategies with SPE, 
PMS provides comprehensive techniques for semi-automating 
(i.e., aiding decision making) the process of mapping unseen 
data to various audio-synthesis parameters. It presents many 
considerations for optimizing the data features, such as the 
dynamic range, for better perception and clearer auditory 
presentation with relatively simple mapping to common 
synthesis parameters. Grond and Berger also discuss the 
artistic applications (i.e., "musification") of PMS, pointing 
towards various classic work including Bondage by Tanaka 
[12]. Bondage applies direct and systematic mapping 
techniques to musically present photographic images, using 
audification and spectral filtering. These techniques are further 
examined in SPE in the later discussion. 

The structural mapping stage in SPE, discussed in detail in 
the following section, could be considered as a simplified form 
of PMS, reduced to estimating the dynamic range and time 
resolution of the input data for an informed selection of the 
mapping target for synthetic or symbolic parameters in music. 
Certain mapping of the structural and error components make 
more sense in the design of spectral parameter encoding, while 
others may be useful only for human perception. 

MBS fundamentally differs from both PMS and SPE with 
the use of interactive physical models that follow expressive 
natural acoustic phenomena. Somewhat similar to the 
assumption in SPE that musical sound structure increases the 
(multi-dimensional) perceptibility, MBS assumes that a well-
defined virtual-acoustic system, which we may experience in 
a real-life natural environment, enables intuitive 
comprehension of complex high-dimensional data structures. 
The data points are mapped to the configuration or the initial 
state of such physical models, rather than altering the sound-
producing mechanisms, therefore allowing the reuse of the 
same model with different data sources. In contrast, since the 
SPE takes the dynamic range and time resolution into account 
for musical organization, it benefits from and requires some 
level of manual examinations for each new design of 
musically-structured sonification. 

Hermann et al. have explored other sonification 
techniques that are relevant to the SPE framework. For 

example, principal curve sonification (PCS) focuses on 
identifying the hidden structure across multiple data 
dimensions [13], while SPE attempts real-time or 
instantaneous extraction of the structure in a single dimension. 
Also, as SPE exploits the parameters of magnitude-spectrum 
distribution such as the mean and variance, Hermann et al. 
have experimented with utilizing multiple frequency bands in 
their spectral mapping sonification (SMS) for mapping and 
analyzing EEG data, enabling multi-dimensional sonification 
with a rich timbre [14]. While this approach may provide 
feasible bidirectional relationships between the input data and 
output sound with little channel interference, it constrains the 
use of polyphonic timbres to isolated frequency ranges, which 
SPE tries to address. 

Lastly, audification is a rather straight-forward technique 
that maps a vector of data to the time-domain amplitude of 
audio samples (after some preprocessing such as scaling and 
filtering, if necessary). It does not involve any mapping of data 
structure to hierarchical representation in sound, although it 
may potentially reveal the structural pattern of the data as a 
temporal-spectral effect. The resulting audio may arguably 
provide the highest reversibility to the original data, given that 
we have access to the digital audification data or be able to 
capture the acoustic signal with high temporal precision with 
no acoustic interference. In addition to audification, various 
techniques exist for digitally encoding or embedding non-
musical information into digital audio data, particularly in the 
field of audio steganography [15]. Our framework, in order to 
focus on perception, aims for encoding data into an acoustic 
signal that transmits through the air, and decoded by either a 
human or machine listener, we exclude discussions about 
purely-digital data encoding and decoding. 

The following sections discuss the main components of 
the SPE framework with the focus on analysis-driven decision 
making and spectrally-decodable data mapping. First, we 
present the overview and the configuration of the design 
process. We then discuss several approaches to aligning 
musical and non-musical data structures by means of simple 
analytics. The following section elaborates the strategies and 
various musical techniques for designing a "reversible" 
sonification utilizing parameterized magnitude-spectral 
distribution. 

2. THE FRAMEWORK OVERVIEW 

 

Figure 1: The basic overview of the SPE framework. 
The solid lines are the essential signal paths for data 
encoding and decoding while the dotted ones are 
optional perceptual treatments. Also, the red color 
indicates an acoustic signal as opposed to a digital 
signal with the gray color. 

The framework for reversible musical data encoding consists 
of five steps: data input, structural analysis and selection of 
musical dimension or techniques, spectral encoding, auditory 
output, and evaluation & data recovery. As shown in Figure 1, 
some paths are optional and the whole process could consist 
of only the input, spectral encoding, audio output and 
evaluation. The structural analysis and mapping may provide 
additional musical organization to the spectral encoding 
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process. Both the mapping and encoding stages take 
techniques of dividing the signal into two distinct components, 
with somewhat different implications in each stage. 

The provided examples in the following discussion are 
available online 1  for listening and experimenting. The 
example sonifications utilize a web-browser-based real-time 
audio environment called Data-to-Music API, developed by 
the authors [16], which enables various modes of synthesis and 
sequencing including spectral processing. As the evaluation 
(or the machine-listening) system is meant to be physically 
separate from the encoding / sonification system, the online 
examples do not compute the evaluation results internally. 
However, the reader may be able to test the examples using 
common audio descriptor tools, such as the zsa.descriptor 
library for Max/MSP [17]. 

3. STRUCTURAL MAPPING 

As stated previously, we are interested in analyzing and 
repurposing the data structure for musical organization for 
increased expressivity and perceptibility. By "data structure", 
we signify not the format of the data organization but the 
underlying characteristics such as predictable development 
over time, periodicity, and distribution. SPE takes the simple 
approach of extracting structures using the additive error 
model, a commonly employed modeling technique in, for 
example, data compression, audio and vocal synthesis, and 
statistical signal processing. The analysis process separates the 
input signal (data) into rough structural and residual 
components, such that 
 

 𝑥 𝑡 = 𝑓 𝑡 + ℇ, (1) 
	
where 𝑥 is the input signal, 𝑓 is the structural component, 𝑡 is 
the time index, and ℇ is the non-structured component. In a 
data-compression or audio-synthesis context, the aim of the 
structural decomposition would usually be the reduction of 
complex data into more concise parametric representations for 
further coding or transformation, while retaining the residual 
part for every data point but in a narrower and more stationary 
dynamic range than the original form. For the purpose of 
mapping to musical structures, instead of size reduction, the 
decomposition of data allows us a flexible mapping of non-
musical data to appropriate musical structures without losing 
the information as a whole. 

3.1. Examples of Structural Mapping 

 
 

 
 
 
 
To illustrate the structural mapping process in a very simple 
sonification problem, suppose we encounter a single-
dimensional time series with slowly increasing central values 
with somewhat stationary noise deviating around them (Figure 
2), which may be expressed as 
 
                                                             
1 https://GTCMT.github.io/DataToMusicAPI/icad2017 
(Online Examples, Accessed May 15, 2017) 

 𝑥 𝑡 = 	
1

1 + 𝑒+,
+ 𝜀. (2) 

 
Mapping the original signal x to, for example, the volume of 
an oscillator (Online Example 1) has a potential of impeding 
the musical balance or perceptibility as the slow increase of 
the volume may be hard to hear in the beginning, and it does 
not take advantage of the dynamic range of human hearing at 
any given moment. Similarly, if we map x to the frequency of 
an oscillator with a fixed amplitude (Online Example 2), 
although it may represent the data faithfully, it may also 
produce a sense of "unstable" pitch slowly evolving that does 
not reside well in more complex sonifications where multiple 
sound dimensions are presented. The extraction of a larger 
non-stationary envelope allows repurposing of such non-
musical data sources by, for instance, mapping the residue to 
a full-range of amplitude to hear the detailed fluctuations 
while the slow-moving central values could be assigned to the 
frequency to produce more stable and "organized" pitch-
sweeping gesture (Online Example 3).  

With unordered data, the focus of analysis typically shifts 
to, for example, clustering, cross correlation, or observing the 
distribution. In SPE, we utilize the shapes of distribution for 
musical organization. For example, if a given distribution does 
not fit to a Gaussian function, we may instead parameterize it 
into line segments with a fewer number of breakpoints. We 
can then generate a percussive or metallic timbre with 
sinusoidal oscillators with the frequency randomly sampled 
from the parameterized distribution, as described in the next 
section, while using the residual signal for amplitude 
modulation (Online Example 4). 

Another approach for utilizing the value distribution rather 
imposes an existing musical structure, such as a musical scale 
that introduces the minimum amount of distortion, to 
transform the data non-linearly while retaining the residual 
values for additional parameter encoding. The Online 
Example 5 demonstrates the selection of the best musical scale 
by computing the signal-to-noise ratio after quantizing the data 
points with the common musical scales in all transpositions. 
This example may provide improved musical perceptibility, 
but does not assure a spectrum-based data recovery. For that, 
the quantization residual signal from may be mapped to, for 
example, a parameter of the magnitude spectrum, as discussed 
in section 4.1.2. 

3.2. Estimation of Data Structure 

To roughly estimate a non-stationary envelope structure in 
unknown data, we may naively apply a high-order moving-
average filter (mocking iterative linear prediction analysis) 
and then examine the uniformity of the residual noise by 
calculating the normalized entropy (or variance) of the 
distribution (Online Example 6). The resulting residual signal 
is not necessarily uncorrelated (i.e., may contain periodic 
patterns), but the increase of stationary quality enables more 
optimal mapping to certain musical parameters. In addition to 
finding a larger structure, a spectral filter may also capture 
high-frequency repetitions (e.g., by isolating the smaller 
coefficients in discrete cosine transform) (Online Example 7). 
This approach is similar to separating the salient resonances 
and the noise floor in spectral modeling synthesis [18], in 
which the noise floor can be replaced with a parameterized 
spectral noise generator. In addition to these contour 

Figure 2. An example of decomposition of structure 
(Left: Input, Center: Estimated structure, Right: 
Residual signal) 
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extractions, predictive analysis or the first-order differential of 
the signal may capture local sequential dependencies in the 
data.  

Although more complex and multi-dimensional statistical 
analysis using iterative computation may be beneficial, our 
motivation of using a relatively naive estimation is to allow 
real-time design (e.g., live coding [19]) of sonification with 
unseen data, including short-time analysis and mapping of 
streaming data. The simplicity of the analytical process also 
helps in retaining intuitive relationships between the input 
signal and the output parameters, which take relatively close-
to-original data structure, while dynamic transformations such 
as dimensionality reduction may not be suitable for the 
purpose of the data recovery from the resulting audio.  

Therefore, the use of an additive model is beneficial in that 
it provides a coarse structural component for human 
perception (and potentially for MIR classification tasks or a 
model-based estimation of a cleaner signal). On the other hand, 
the residual component is suited for preserving fine details that 
may be deterministically recovered by spectral feature 
extractors [6][17]. Combining the structural and residual parts, 
after proper rescaling, produces a close-to-original estimate of 
the input data. 

4. SPECTRAL PARAMETER ENCODING 

 

Figure 3. A signal flow incorporating structural 
analysis (Section 3) into spectral parameter encoding. 

The framework aims for not only aligning the musical 
dynamics for multi-dimensional comprehension, but also 
preserving as much information as possible in the acoustic 
signal for computational data retrieval. As shown in Figure 1, 
this spectral encoding process may be applied directly and 
entirely to the raw incoming data, or may be combined with a 
structural analysis to utilize extra information in the mapping 
and generation processes. A sensible approach may be to route 
the structural element of the data to the selection of musical 
expressions to generate, such as harmony and timbre, while 
using the subtracted residual part for spectral parameters that 
define the acoustic contour (see Figure 3). However, both 
signal paths may also be used for spectral encoding, while the 
musical content is kept as ornamental or non-essential for 
computational data recovery. 

Similar to the additive model used in the structural 
mapping, the spectral parameter encoding combines two parts, 
statistical magnitude-frequency parameters and a matching 
distribution, to generate an acoustic result, such that:  

 
 𝑦 = 𝐼𝐹𝐹𝑇[𝑔 𝜃,, 𝑋 ]. (3) 

 
The distribution parameter variables, 𝜃 , deterministically 
holds the input data (that are linearly scaled if necessary), 
which are later measured by spectral descriptors to estimate 
the original (or post-scaled) values. The encoded parameters 
may be the first-order descriptive statistics such as spectral 

centroid (weighted mean), spectral spread (variance), 
skewness (median), and spectral crest factor (tonality 
measure). The actual contents of the spectral distribution do 
not matter as long as they satisfy the statistical analysis in the 
short-time Fourier transform (STFT) signal [20]. This allows 
us to employ various approaches for creating musical 
expressions, including timbral, harmonic (with musical scales), 
and polyphonic mixed-timbre voices, that are expanded from 
the target parameter values.  

4.1. Spectral Encoding Techniques 

Here, we discuss several techniques of musical sound 
composition that conform to the acoustic constraints for a 
sufficient level of data retrieval. The encoding part may utilize 
either time-domain or frequency-domain synthesis via 
discrete-time Fourier transform (FT), while the analysis takes 
part in the FT of the output audio signal.  

4.1.1. Timbral Structures 

First, we present several of the timbre-based expressions. 
After specifying the distribution function parameters such as 
the mean and variance from the input data, one may use 
spectral filtering to create percussive or sweeping ambiance 
with a changing noise-color (Online Example 8), similar to 
Tanaka's Bondage discussed previously. This encoding 
technique requires a frequency-domain element-wise 
multiplication of the given envelope to the STFT of a white 
noise, then inverting to the time-domain signal. The resulting 
audio enables a relatively robust data retrieval with spectral 
feature description (e.g., centroid and spread) or envelope 
estimation. Aside from amplitude changes over time such as 
attack and decay shapes, the spectral content (white noise) 
may not provide additional structure for perceptual 
sonification compared to other techniques discussed below. 
However, the distribution function may take an elaborate 
shape with linearly-interpolated break points, which would be 
analyzed with peak estimation or band-limited magnitude 
analysis similar to SMS. While this approach is efficient for 
real-time synthesis, it requires the matching of the input vector 
length and a half of the FT frame by, for example, linear 
interpolation or zero-padding the extreme frequency ranges.  

Though the spectral filtering approach may be good for 
creating expressions of generic noise percussion, its timbral 
dynamics can be fairly limited. Instead of using a time-domain 
noise generator, the oscillator-bank-based approach allows us 
to take the same spectral distribution function but create more 
focused (pitched) timbre with non-harmonic partials suited for 
metallic percussion or ambient pad sounds. This may be 
realized with a granular (i.e., random-phase, Online Example 
9) or an additive (i.e., synchronized-phase, Online Example 
10) synthesis using, for example, the random-sampling 
technique using the inverse transform [21] of the cumulative 
spectral distribution.  

The additive synthesis in the oscillator-bank approach is 
similarly robust for the recovery of data as spectral filtering. 
However, the granular synthesis tends to introduce phasing 
interferences among partials, making the estimation of the 
statistical parameters less reliable. Since the random time-
domain source signal in these timbral-composition approaches 
cannot be easily estimated, they may be suited for representing 
the residual noise envelope from the structural analysis step. 
The structured component, such as a slow-moving contour, 
may be utilized as gain envelope after normalizing the 
magnitude spectrum. 
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4.1.2. Harmonic Structures 

In a more symbolic-level musical organization, one can take 
spectral parameters, in which we encode data, and generate a 
single note with natural harmonics or multiple notes forming 
an arbitrary harmony. For instance, given a spectral centroid 
(weighted mean), it is trivial to expand it to a single note with 
N harmonic partials with a fixed unit amplitude by 
 

 𝑛	 = 	1, 2, … , 𝑁; 	𝑁 ∈ ℤ,	

𝑣? 	= 	
𝑛𝑁𝜇
𝑁!

, 
(4) 

 
where 𝑣  is the vector of frequencies for sinusoidal additive 
synthesis, 𝜇 is the spectral centroid in Hz, and 𝑁 is the number 
of the harmonics (Online Example 11). We can also generate 
any pitch by adjusting the amplitude and number of overtones 
and undertones accordingly. The following example computes 
a single tone conforming to given spectral centroid and 
spectral spread (weighted variance) values. For an odd number 
of natural harmonics with an identical gain for non-central 
oscillators, 
 

 𝑓𝑜𝑟	𝑁	 ∈ 1, 3, 5, … ,	
𝑛	 = 	1, 2, 3, … , 𝑁,	

𝑎? = 	
1	𝑤ℎ𝑒𝑛		𝑛	 =

𝑁 + 1
2

𝑔	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

𝑔 = 	
𝜎L

(𝑣? − 𝜇)L + 𝜎L 1 − 𝑁 ,
 

 

(5) 

 
                                                             
2 This may be obtained by converting a list of degrees in MIDI 
note number starting at 0 (e.g., [0, 4, 7, 11] for the major 
seventh) to frequency. 

where 	𝑎 is the gain coefficients with a symmetric form 
{… , 𝑔, 𝑔, 1, 𝑔, 𝑔, … } and 𝜎  is the square root of the spectral 
spread (i.e., standard deviation, Online Example 12). 
Similarly, we can construct an arbitrary harmony with 
sinusoidal oscillators centered around a given spectral 
centroid, such that 
 

 
𝑣? =

𝜇𝐶?
𝐶

,
S+T

?UV
 (6) 

 
where 𝐶 is a vector of normalized frequency coefficients in Hz 
for creating a chord2 and 𝐶 is the average frequency of them 
(Online Example 13). Combining both additive synthesis and 
harmony, it is also feasible to generate any chord on any root 
note from given spectral parameters (Online Example 14). The 
flexibility in generating the pitch or the chord quality can be 
utilized to encode additional data dimensions for human 
perception. These harmonic techniques are relatively robust 
for retrieving the spectral parameters, provided that the data 
mapped to the spectral centroid is scaled properly so that the 
harmonic or chord-voice frequencies exist within the spread 
range. 

4.1.3. Further Applications 

Lastly, in addition to encoding data to multiple spectral 
parameters for generating a single spectral distribution, the 
potential of SPE is the ability to mix multiple timbral 
techniques (e.g., harmony model + single-additive-voice + 
noise percussion) as long as they conform to the overall 
distribution parameters (Online Example 15), or even to mix 
multiple distributions and estimate their parameters with a 
mixture-model parameter estimation [22]. Mixing multiple 
instruments to a single distribution enables additional 

Figure 4. An example of multi-dimensional SPE system 
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perceptual dimensions that may be tracked by the human 
listener (e.g., the salience of a particular instrument), while 
preserving the most critical data channels in the spectral 
parameters for computational recovery. 

5. DISCUSSION AND FUTURE WORK 

To summarize, SPE encapsulates the data points, either from 
raw input or analyzed structures, to the abstract statistical shape 
or parameters (e.g., mean and variance) of a magnitude-
spectrum frame. This facilitates a uniquely constrained yet 
flexible composition expanded from the target magnitude 
spectrum, and even allows additional mapping of data to such 
as the choice of chord or onset shape for perceptual decoding. 
As we include multiple data dimensions in the analysis, 
mapping, and encoding paths, the entire signal flow may grow 
into a quite complex system as Figure 4. 

We did not, however, examine musical expressions that 
extend over several seconds (e.g., rhythms, melodic patterns) 
in this discussion. For future work, we plan on examining 
spectral encoding techniques over time utilizing symbolic 
parameterizations. Relevant work includes Smalley’s 
spectromorphology [23], an analytical framework for electro-
acoustic music in which the author lists qualitative distinctions 
in each morphing (moving) steps of spectral contents. The 
chosen parameters (e.g., "upbeat" + "transition" + "closure") 
combine and form a complex musical gesture over time. In 
addition, spectral modeling synthesis [18] also provides 
insights in creating time-varying timbral structure with the 
deterministic and random components.  

The time-varying encoding poses a practical issue with the 
time resolution of the data stream. SPE analyzes the STFT 
frames of the output audio with a reasonable frequency 
resolution (e.g., 1024 samples at the sampling rate of 44100 
for harmonic or granular approach), which limits the data rate 
to at least one datum per 20 milliseconds. This is quite slow 
compared to, for example, audification or even possibly PMS. 
The data rate is forced to decrease even more when using 
encoding techniques such as granular synthesis or mixed-
timbre composition because of the susceptibility to voice 
phasing. Also, adding time-domain audio effects such as delay 
and reverberation also smears out the phase relationship, 
causing more errors in machine listening. 

6. CONCLUSION 

We presented spectral parameter encoding, a dual-layer 
framework for musically expressive yet functional design of 
sonification. It employs a simple structural analysis to 
facilitate a semi-automated organization of mapping, and data 
encoding to spectral features as well as computational feature 
extraction to ensure the minimized loss of information as a 
whole in the process of transformation and mapping. Although 
the use of spectral distribution imposes certain acoustic 
constraints, it allows a variety of musically-organized 
sonification from timbral to harmonic expressions with the 
possibility of a multi-timbral structure. 
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