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ABSTRACT

The modeling of biological data can be carried out using struc-
tured sound and musical process in conjunction with integrated
visualizations. With a future goal of improving the speed and ac-
curacy of techniques currently in use for the production of syn-
thetic high value chemicals through the greater understanding of
data sets, the madBPM project couples real-time audio synthesis
and visual rendering with a highly flexible data-ingestion engine.
Each component of the madBPM system is modular, allowing for
customization of audio, visual and data-based processing.

1. INTRODUCTION

Data sonification is a rapidly evolving discipline that explores the
use of data representing information from scientific processes, an-
alytic models or real-time tracking as the drivers for sound gener-
ating systems. The goal of many sonification systems is the con-
veyance and perception of specific information related to source
data as realized using sound as the principal component: an audi-
tory display. In the same ways that computer-driven visualizations
of datasets create visual analogues to the complex relationships be-
tween variables and data abstractions, sonifications represent data
as audible constructs existing in time. For situations involving
real-time multi-modal monitoring of continuous data streams, au-
ditory displays working in conjunction with visual displays can
provide additional attentional bandwidth for tasks ranging from
the encoding of avatar motion and action in virtual space [1, 2] to
correcting athletes’ golf swings [3].

When sound is put to use as an expression of structured data
derived from a functional process, a significant transformational
and translational component is necessary to map parameters from
this functional realm to parameters of sound that have the poten-
tial to express and expose specific relationships of import within
the data. As audible sound itself is perceptually comprised of a
great number of parameters ranging from amplitude to frequency
to timbre to location in space, the organization of sounds and the
organization of the parameter mappings that are associated with
sound become crucial when attempting to create meaningful soni-
fications of complex data sets, themselves representative of com-
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plex multivariate processes. Such aesthetic and artistic exploration
of data has great promise in driving new research paradigms as
has been seen in recent projects begun as artistic initiatives such
as Stanford University’s “Brain Stethoscope” — a portable device
that detects the onset of epileptic seizures through the real-time
rhythmic and harmonic musical sonification of pre- and post-ictal
neural activity [4].

In this light, musical sonification can be understood as the
application of organizational techniques commonly attributed to
musical composition and performance towards the grouping and
structuring of sound generated from a data source. Musical char-
acteristics such as pitch, rhythm, melody, harmony, timbre, tempo,
spatialization, attack, decay and intensity can be mapped to raw
parameters or calculated attributes of datasets, allowing for the
creation of sonic output that we hear as musical in nature while
still capable of conveying a great deal of information. Taken one
step further, musical structures, such as the transformation of orga-
nized or generated note material, or the application of continuous
changes to instrumental parameters responsible for shaping the arc
of a musical phrase can also be driven by analyzed data.

Application of musical structures and techniques in this map-
ping process is experimental and compositional. Compositional
process focuses at different levels of detail at different points in
that process, ranging from low-level note-to-note attention to high-
level structural attention. Similarly, sonification can range from
mapping sound directly on discrete data points parsed over time to
sonification of procedures in transformational algorithms. Bover-
mann et al. [6] further distinguish between the sonification of al-
gorithms by juxtaposing merely inputs and outputs versus inputs,
outputs, and all intra-algorithmic transformational steps between.
They also propose a distinction for operator based sonification,
where scientific models are directly embedded in sonic mapping
functions.

The importance of these distinctions becomes particularly
clear when comparing sonification of processed, structured data
vs large sets of unstructured data. In the case of unstructured data,
there may not be an inherent model with which to scaffold sonic or
visual mappings and any data traversal method becomes an even
more significant force in sonic signification. Significant questions
around software platforms for sonification and visualization in-
clude whether the platforms are used for research-oriented explo-
ration or post-research display of findings (presentation). Another
question is that of whether the end-user is seeking aesthetic explo-
ration (artistic) or empirical knowledge (scientific) or some mix of
the two. An ideal software toolkit for data perceptualization would
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Figure 1: An example of visualization in madBPM.

allow for productive research and experiments by laboratories and
artists, while also allowing that research to be presented live at
professional meetings and artistic performances. The authors have
produced a software toolkit and model for data perceptualization
that emphasizes user-defined “behavioral abstractions” to improve
sonification software flexibility and extensibility. This model has
been implemented in the MadBPM software platform to create a
unified research environment for both creative and analytical ex-
plorations of data through perceptualization.

2. MADBPM

The madBPM software platform is built around a specific model
that emphasizes actions and procedures. Sonfication and visual-
ization in this platform is realized by end-users who define code-
based objects that describe data-flow and logic in the traversal of
data and mapping to sound or visuals. The sound synthesis is pro-
vided by the SuperCollider sound and music programming lan-
guage [5], but the modular design allows for different backends
capable of Open Sound Control messaging to be used. The soft-
ware is written in C++ and relies on openFrameworks1 for the vi-
sualization functionality.

We assume that musical structure and form can be utilized to
not only represent characteristics of biological processes but more
importantly also to aid researchers in discovering potentially inter-
esting and important relationships previously hidden within com-
plex data sets. From this assumption, we designed madBPM, a
modular sonification and visualization platform that allows for the

1http://www.openframeworks.cc

rapid prototyping and display of sonic and visual mappings. Ini-
tially developed for a project focused on the identification of key
biological data points within the process of biosynthesis for high
value chemicals, madBPM was designed as a modular toolkit, ca-
pable of interfacing with existing audio engines, visual coding lan-
guages and customized data ingestion modules. In its current state
madBPM is linked to the SuperCollider [SC] sound and music pro-
gramming language [5] and the openFrameworks visual program-
ming language2.

In the following sections, we describe some of the most impor-
tant architectural features of the madBPM software environment
and data perceptualization model. These features are described in
the context of the original research project from which the software
environment emerged.

2.1. Data Perceptualization in madBPM

Auditory and visual mappings from datasets are experimentally
and contextually derived. These mappings are further impacted by
the initial state of the data being mapped—for instance, whether
the dataset contains errors or invalid data-points. Mappings may
need to account for these, or the data may need to be pre-filtered
before sonification and visualization. Software environments can
position one or the other approach as always necessary by de-
sign, precluding the use of unstructured data sets. madBPM is
designed to allow for flexibility in the kinds of data sets that might
be processed in the environment by emphasizing its three layers
of behavioral abstractions: 1) program-level logic, 2) data traver-

2http://openframeworks.cc
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sal/parsing, and 3) audio/visual mapping. In the madBPM soft-
ware environment researchers, artists, or other users generate re-
sults by defining transformational schemes at each of these three
levels of abstraction. In the last layer, audio/visual mapping, data
is transformed into parameters of sonic and visual events. The
second layer defines schemata for data-sets to be algorithmically
traversed. In the final and “top” layer, changes in the two lower
layers of abstraction can be automated. Each of these layers is
described more thoroughly in section 3.

2.2. Software Environment

madBPM makes extensive use of openFrameworks in its archi-
tecture. Users of the platform are initially presented with a lean
graphical user interface [GUI] comprised of three key components
(Fig. 2). The first of the components is a pane displaying the struc-
tured data files automatically loaded at startup, described in Sec-
tion 2.3. Each entry in this pane represents a “tag” that describes
a subsection of the data. Clicking on tags that appear in this list
selects and highlights that tag, while leaving tags that exist within
that subset selectable and making tags not represented in the subset
unselectable (grey, non-clickable).

The second component, at center screen, is a GUI panel that
displays the console output of the managed SC process. This panel
allows users to get reference information from SC or debug unex-
pected behavior from within the platform during any development
or testing.

A third component of the platform interface features a “util-
ity bar” like structure near the bottom of the screen. The GUI
is extensible from source code and the utility bar is a potential
non-intrusive spot for buttons or short-hand reference information.
Currently, the bar features a color indicator box representing the
connection state with SC, a Frames Per Second meter, and a but-
ton “new collection”. Once a series of tags have been selected
from the first GUI component (the tag list), activating the “new
collection” button triggers the data from those corresponding files
to be combined into a collection (ordered set) for sonification and
visualization. Visualization is drawn behind the GUI, which can
be hidden by a hotkey.

2.3. Structure of Data

Data is currently read by the platform from partially pre-processed
CSV files. These files provide both raw data in labeled columns,
but also tags that identify the relationship between each file. From
the research aims of the initial phases of the project, these files
communicate analyzed information from lanes on an electrophore-
sis gel image. The labels that identify the gel image and each lane
within that image are the tags that are applied to files and subsets
of data within those files.

When madBPM reads these files, they are organized internally
into “gel Lane” objects holding the raw data and describing their
tag relationships to the platform. After tag filters have been applied
and a new collection is constructed, all internally stored gel Lanes
matching the query are aggregated into a “gel Collection” object
that is used by the platform for perceptualization. “gel Collection”
objects present themselves to the platform like a multidimensional
iterator that are held by a Ranger object and parsed by Walker
objects (Section 3). Once gel Lane objects are stored in memory,
each gel Lane object merely wrap immutable data and are used to
create user-defined gel Collection objects.

Figure 2: madBPM GUI at startup. At left, the tagged data filtering
pane. At center is the console output of SuperCollider. At the
bottom is the “utility bar”, featuring a button to build an active
collection from the selected data tags, a Frames Per Second meter,
and, at far right, a color status icon indicating whether the platform
has successfully initialized SuperCollider.

Figure 3: Detail of the tag list selection and filtering. Selecting
tags filters out data that do not exist in all selected categories. Grey
tags do not appear in the specified subset, while yellow tags may
be selected to further constrain the set.
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2.4. Sound Backend API

While the structure of visualization mappings are completely in-
ternal to the C++ application core, sonification mappings are rep-
resented within madBPM as objects in two ways: Sounder objects
in the platform’s C++ source and corresponding sibling Sounder
objects in SC source. Sounder objects are encapsulations of spe-
cific algorithmic behaviors for the transformation of data into sonic
or musical material. To facilitate the communication between the
platform’s internal representation and the SC backend representa-
tion, all data is transferred via Open Sound Control UDP messages
and conforms to a strict API. Messages are directed to an address,
which may be on the same computer or on another machine across
a network, and are constructed as a command string followed by
corresponding arguments. All arguments after the command spec-
ifier are tagged by preceding the argument with a string descriptor
beginning with a ‘:’ character.

The application level commands sent from the core platform
to SC are comprised of:

• loadSynthDefs
Load the platform’s SC synthesis definitions.

• create {:cls :id}
Create a new Sounder object of type :cls with class-specific
unique :id.

• updateParams {:cls :id :vol :rf :rv :mw}
Update the Sounder object of type :cls and :id with the val-
ues :vol, :rf, :rv, and :mw.

• remove {:cls :id}
Remove the Sounder object of class :cls and with :id.

• shutdown
Stop all active sounders and shutdown the process.

• funcDefinition {:cls :sel}
Reply to madBPM front-end with a description of :cls’s
function named :sel.

3. BEHAVIOR AND STRUCTURE IN MADBPM
PROGRAMS

The most important design feature of the madBPM platform is
that of behaviors. These are emphasized in three key levels of
abstraction: program-level logic, data-parsing behavior, and data
perceptualization algorithms or mappings. Each of these levels
of behavior are represented within the platform as objects which
describe their function over time (Fig. 5). From the beginning,
madBPM was intended to aid in lab research data-oriented artistic
inquiry, but also to enable both real-time professional presenta-
tion and artistic performance. Each of these levels of behavioral
abstraction aim to address high and low level structural concerns
for any of these contexts. Users define the collections, subsets of
the data based on selected tags, to be sonified and visualized, and
these collections are passed to the lower levels of the behavioral
object hierarchy. By asking users to explicitly define the data pars-
ing and meta structure (program-level logic), the platform is flexi-
ble enough to allow work with both un- or pre-processed datasets,
structured or unstructured data, or multiple forms of data segmen-
tation and tagging. At the current state of the project, these objects
are still defined in C++ source code and compiled into the plat-
form.

Figure 5: The behavioral object hierarchy. At the top level, the
platform references a Ranger object, which defines a “program-
like logic” executing over time. Ranger objects own at least one
Walker object, each parsing data collections. Walkers communi-
cate the data they parse to the Sounder objects and Vis objects they
own.

3.1. Sounder Objects and Vis Objects

At the lowest level of the behavioral hierarchy are Sounder ob-
jects and Vis objects. These objects define specific mappings and
algorithms for the transformation of data into visual elements on
the screen or sound through speakers. These objects do not tra-
verse data, nor do they define the rate at which data is accessed.
These objects receive data from parent (Walker) objects and re-
spond to them according to their defined behavior. All Sounder
objects are polymorphic relatives of a base Sounder class, while
Vis objects are similarly related to a VisObject base class. Both
classes receive data from and interface with parents in identical
ways: Sounders and Vis objects respond to their parent Walker
object’s call to an update function that accepts all relevant per-
ceptualization data. Since Sounder and Vis objects encapsulate
self-contained visualization and sonification algorithms, these ob-
jects may range from simple one-to-one mappings to much more
complex real-time statistical models.

3.2. Walker Objects

Walker objects are specifically encapsulated defined behaviors for
iteratively parsing gel Collections they reference. Example be-
haviors might include: forward sequential traversal, visiting each
gel lane in sequence and every value in the lane; reverse sequential
traversal, opposite of forward sequential; minimum to maximum
traversal, visiting elements across each or all lanes from lowest
value to highest; or, selective traversal, visiting every lane in the
collection and updates Sounders and Vis objects only for certain
values.

In the hierarchy of behavioral objects, Walkers communicate
the values they visit in the data with the Sounder and Vis objects
they have references to.

3.3. Ranger Objects

Ranger objects encapsulate “program-like logical structure”, and
interface directly with the platform and Walker objects they own.
Ranger objects are analogous to the role of a musical ensemble
conductor. Typically, only one Ranger class would be active at
any given time, and these classes define meta-level structures and
sequences during a professional or artistic presentation of the data

138



The 23rd International Conference on Auditory Display (ICAD–2017)  June 20-23, 2017, Pennsylvania State University 

Figure 4: A closeup of the the team’s “Norris” Vis object. Data from electrophoresis gels are used to transform and extrude 3D meshes in
spaces, representing density and skew as signifiers of specific trials and the distribution of their molecular weights.

perceptualization. A Ranger object, for example, might begin its
operation by defining three different concurrent Walker objects and
after some conditions have been met replace two of them with
Walker objects of different behavior types.

These objects create the Walker objects that traverse the data,
and choose which perceptualization objects those Walker objects
should report to — creating, removing, or altering the relationships
between these when necessary.

4. AN EXAMPLE PROGRAM

This section will describe an example hierarchy of behavioral ab-
stractions that would define a specific operating program in the
madBPM platform. As described in the previous section, Ranger
objects encapsulate the storage and lifespan of objects that parse
data streams, or the program logic of the presentation. For this
example program, the Ranger object might begin operation by au-
tomatically creating two collections of data from different subsets
of tags. The collections (A and B) might consist of all of the
gel Lanes tagged with {“supernatant”, “M9pG”, ”hrs6”}, while
the second consists of gel Lanes tagged with {“Cel9AT”, “lipA”,
“Induced”}, respectively. Next, the Ranger must associate each
collection with a parsing object. Collection A could be assigned a
ForwardWalker and collection B a LocalMaxWalker.

The ForwardWalker and LocalMaxWalker objects are prede-
fined built-in Walker objects for traversing data collections they are
associated with. ForwardWalker’s parse the each of the gel Lanes
in their associated collection in the order they are defined, and
within each gel Lane this walker visits each datum in the order

defined. LocalMaxWalker visits each gel Lane in its associate col-
lection in the order defined in the collection similar to the Forward-
Walker. However, for each gel Lane visited, the LocalMaxWalker
will only visit the largest local data value. The rate at which Walk-
ers traverse the collection they are associated with is also speci-
fied by the Ranger object that defined them. The parent Ranger
also specifies the action that Walker objects should take when they
have reached the end of their collections. By default, Walkers that
reach the end of their collection return to the start and continue
parsing again. But Walkers can also be set to stop all parsing upon
completion and to tell their parent Ranger that they have finished.

Instead of discontinuing parsing, the example Ranger will al-
low the default looping behavior and keep track of its own timing
clock. Now that the program consists of subsets of data and behav-
ioral abstractions that define how to parse them, the Ranger must
associate sonification and visualization mappings for the Walk-
ers. Perceptualization algorithms are encapsulated in Sounder and
VisObjects. The example Ranger will create a ScaleSounder for
both Walker objects, but it could provide ForwardWalker with a
GelBars VisObject (Fig. 1) and a LocalMaxWalker with a Nor-
risMesh VisObject (Fig. 4). The drawn output of both visualiza-
tion objects are overlaid on the same screen space. Based on each
Walker object’s specified sample timing, the objects poll their next
data point and deliver that data to their connected mapping objects,
both Sounders and VisObjects.

In this example program, the Ranger might use an internal
timer to sequence changes in data collections, data parsing al-
gorithms, and perceptualization mappings. For example, after 5
minutes have elapsed the Ranger could fade out the ScaleSounder
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attached to the LocalMaxWalker and replace it with a Timbre-
ShapeSounder3. After a few more moments, the example Ranger
might remove ForwardWalker from the program, replacing it with
a slightly altered clone of the LocalMaxWalker.

It is also be possible for the program flow in the Ranger
to change based on conditional logic. An example mentioned
above involved possibly removing a Walker once it had completely
parsed a data collection instead of looping again over the data.
Another possibility, however, is that Walkers that encounter data
values within specific ranges could instigate structural changes in
their parent Ranger. For example, if a Walker iterating over a col-
lection encounters a value that is near a given molecular weight
and has a localized intensity above a given threshold, the Ranger
could respond by removing some Walkers and generating other
new collections, parsing algorithms, and data mappings. The re-
sulting change affects both the aural and visual data mappings, but
also the logical structure of the analysis program. This flexibil-
ity could possibly provide a means of exploring perceptual feature
optimization automatically through behavioral objects.

5. CONCLUSIONS AND FUTURE WORK

The artistic nature of musical sonification is a key element in the
future plans for the madBPM platform, allowing our team to pur-
sue both artistic and diagnostic goals using the project. Working
in conjunction with members of the Biological Sciences depart-
ment at Rensselaer Polytechnic Institute our team is investigat-
ing methods of multi-modal sonification and visualization using
madBPM to allow researchers to better understand relationships
between proteins used in the synthesis of high-value chemicals.
madBPM allows both scientific researchers and artists to process
and map data parameters from recent experiments quickly and ef-
ficiently to parameters of sound ranging from low-level synthesis
techniques to higher-level organizational or compositional param-
eters. In this manner we envision a series of sonification and vi-
sualization experiments that analyze data sets from multiple view-
points, allowing for fresh new looks into the data itself.

At the same time, the use of biological data as the progenitor
of data-driven artworks is central to the madBPM project, allow-
ing composers and visual artists to experiment with biological data
in the creation of multi-modal artworks. An exhibition of such
works is currently being planned at Rensselaer Polytechnic Insti-
tute’s Collaborative-Research Augemented Immersive Virtual En-
vironment[CRAIVE] Laboratory to showcase how biological data
can inspire art, as well as how art can inspire research using bio-
logical data.

Within madBPM’s technical implementation, the project has
clearly defined future milestones including:

• Implementation of a Domain Specific Language (DSL) for
real-time scripting and definition of Rangers, Walkers, and
Sounder/VisObjects

• Support for real-time data streams and ad-hoc data models
• Expanding the existing support for running the platform as a

networked application

The creation of a DSL for real-time scripting of the madBPM
platform will allow for more rapid research prototyping and ex-
pressive aesthetic data explorations. Currently, the team has pro-

3TimbreShapeSounders use filters to reshape the spectral characteristics
of a sonic drone texture

posed a DSL model that would focus on defining the high level
behavioral abstractions, allowing users to customize data mapping
and program logic at the application’s runtime. The scripting lan-
guage specification would require a balance between low level ac-
cess to data and functions that can reach the level of composition
— creating complex behaviors from underlying behavioral com-
ponents.

madBPM uses a data model that is derived from electrophore-
sis gels in biosynthetic chemical research. In the course of im-
plementing a data importing framework, the team found explored
many useful ways of tagging, storing, and passing data around
the platform. Another proposal for the future development of
madBPM is the generalization of these methods for different types
of data models and streams. In particular, the team would like to
implement a pipeline for real-time data streams with data models
that can be defined or redefined on the fly (in coordination with the
DSL milestone).

The final proposed milestone for future development is expan-
sion of the madBPM’s networking capabilities. As the size of data
archives and complexity of algorithms grow, it often becomes nec-
essary to distribute computational workloads amongst networked
computer nodes. This is especially true for professional and aes-
thetic presentation of data perceptualization, where timing and re-
liability can be crucial. madBPM’s use of Open Sound Control
already leverages a balance in speed and reliability and the possi-
bility of communicating across a network between front and back
ends. Proposed future development would break processes down
into smaller units for concurrent distributed computation, allowing
visual and audio display to be broken up amongst several monitors
and speakers.
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