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ABSTRACT

We introduce a parameter mapping sonification to support sit-
uational awareness of surveillance operators during their task of
monitoring video data. The presented auditory display produces
a continuous ambient soundscape reflecting the changes in video
data. For this purpose, we use low-level computer vision tech-
niques, such as optical-flow extraction and background subtrac-
tion, and rely on the capabilities of the human auditory system
for high-level recognition. Special focus is put on the mapping
between video features and sound parameters. We optimize this
mapping to provide a good interpretability of the sound pattern,
as well as an aesthetic non-obtrusive sonification: precision of the
conveyed information, psychoacoustic capabilities of the auditory
system, and aesthetical guidelines of sound design are considered
by optimally balancing the mapping parameters using gradient de-
scent. A user study evaluates the capabilities and limitations of
the presented sonification, as well as its applicability to supporting
situational awareness in surveillance scenarios.

1. INTRODUCTION

The goal of video surveillance is to spot irregular, abnormal, or
suspicious behavior of persons and objects to identify and pre-
vent illegal or threatening actions. The huge increase of closed
circuit television (CCTV) installations over the last decade shows
that video surveillance has been recognized to be an appropriate
method for crime prevention and evidence recording. Though, in
contrast to the rapidly growing number of surveillance cameras,
the monitoring capabilities stay far behind this development. The
reasons are manifold, but a major factor is the high expense asso-
ciated with human resources. The extent of the imbalance between
recording and monitoring capabilities becomes obvious in the high
camera-to-operator ratio. In their observation of 13 control rooms,
Gill et al. [1] came across camera-to-operator ratios from 20:1 to
520:1. Keval [2] reports camera-to-operator ratios from 4:3 to
120:1 in his study of 14 control rooms. In addition to the large
number of cameras to monitor, operators are often responsible for
a wide variety of other tasks. A brief enumeration of such addi-
tional and often concurrently processed tasks includes [1, 2]:

• logging of incidents,
• preparation of working copies for evidence to the court or fur-

ther investigation,
• tape management,
• communication with individuals inside and outside the con-

trol room, and

Figure 1: Segment-based feature processing and mapping to audi-
tory parameters.

• controlling the entry/exit of the control room.

Such responsibilities lead to distraction from monitoring and
hinder the detection of relevant actions and events. Further, human
perception is subject to limitations that constrain the operator’s
event recognition ability. Such perceptual characteristics that have
a strong influence on video surveillance performance include:

• the short period of attention when monitoring video screens
(approximately 20 minutes [3]),

• difficulties to identify unexpected changes during blinks,
flickers, or disruptions, called change blindness [4], and

• poor recognition of changes that are outside the focus of at-
tention, termed inattentional blindness [5].

All these issues (mismatch of camera-to-operator ratio, ad-
ditional responsibilities of CCTV operators, and perceptual con-
straints) point out that acceptable task performance in such high
stress, multiple tasks environment requires proper situational
awareness of the operators. As demonstrated by Höferlin et al. [6],
sonification of surveillance data can support situational awareness
and reduce subjective workload in multiple task scenarios.

In this paper, we apply feature extraction from video and map
these features to auditory parameters (cf. Figure 1). One advantage
of applying sonification to video surveillance is the complemen-
tary modality of the auditory display to the visual display, which
is especially helpful when multiple target tracking and recognition
tasks are performed [7]. According to the multiple resource theory,
only a small degree of interferences of cognitive resources is ex-
pected in dual-task scenarios that require different mental modal-
ities [8]. Such dual-task scenarios are typical in video surveil-
lance [6]. Situational awareness in video surveillance further ben-
efits from the complementary auditory display due to the excellent
ability of the human auditory system to detect small changes in
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sound patterns and to attract attention to those changes. As var-
ious studies pointed out (for a comprehensive overview see [9]),
human auditory recognition is able to mask specific (e.g., recur-
rent) sound patterns from attentional processing, while being still
sensitive to small variations of the sonic properties as well as to
deviations to abstract rules, such as lexical, semantic, and syntac-
tic information of human speech [10]. Such preattentive detection
of change is often followed by orientation of the auditory focus of
attention to the source (or auditory channel) of change. Preatten-
tive change detection and subsequent switching of attention was
well explored by magnetoencephalographical studies that explain
these phenomena by differences in change-specific components of
the auditory event-related brain potential, such as the mismatch
negativity (MMN) [11].

Our approach exploits these beneficial properties of human au-
ditory processing to support situational awareness in video surveil-
lance. A basic assumption we make is that information relevant to
surveillance monitoring is represented by changes in video signal.
This means that we ascribe static parts of the video little or no
relevant information. To leverage change detection capabilities of
the human auditory system, our approach produces a continuous
sonic pattern or soundscape of the change in video data. Further,
recurrent changes in video generate an auditory texture that fades
from attentional monitoring after some time of familiarization. In
this state of background monitoring, sufficiently large changes of
the auditory texture with respect to the familiar acoustic reference
pattern reallocate attention, again. This is supported by research
of the central auditory processing system that proved that MMN is
only elicited after a few repetitions of a standard stimulus and only
if the deviation exceeds a particular threshold [9]. Hence, we focus
on the design of a non-obtrusive auditory display. Further, the pa-
rameter mapping should, to some extent, allow the interpretation
of the sonification to infer from auditory display some information
of the event that occurred in the monitored video. This supports a
rough classification of the change recognized by the auditory sig-
nal and thus enables decision making, such as if the occurred event
requires further attention by switching the visual focus to a screen.

These two main criteria for the design of our auditory display
(interpretability and non-obtrusiveness) are reflected by the em-
phasis of this paper: the optimization between aesthetical and psy-
choacoustic aspects of this sonification. The goal is to find an aes-
thetically pleasing sonification that still conveys all of the relevant
information in an interpretable manner.

1.1. Related Work

Little work has yet been published in the field of video sonification.
Moreover, most of these sonifications were developed for artistic
purposes (e.g., [12]) or as assistance of visually impaired people
(e.g., [13]). In the context of video monitoring, we identified two
related publications.

The first one is the Cambience system, which was developed
by Diaz-Marino [14]. Besides its application in interactive arts,
and as a technique to provide informal awareness between col-
laborators, Cambience was intended by its developer to be used
as a security system that provides auditory alarms or notifications
when changes occur in video. Therefore, Cambience maps video
data from webcams to a sonic ecology. Differences between video
frames are used to measure the level of activity in a video. Fea-
tures derived from the level of activity in user-defined regions (e.g.,
amount of change, center of activity, and velocity) are mapped

onto sound properties, such as volume, playback frequency, and
stereo panning. Visual programming allows interactive definition
of the mapping between sounds parameters and the features ex-
tracted from areas of interest. In the security context, Cambi-
ence provides an auditory display for process monitoring. This is
closely related to the scenario we present in this paper. However,
there is a distinct difference in the complexity of activities that are
monitored between Cambience and the sonification presented in
this paper. Cambience relies on user-defined areas of interest and
is fixed on the recognition of apriori known events, such as a per-
son entering a room. For this reason, it is constrained to be used
mainly for auditory alarms. Abnormal behavior and more complex
actions are thus hardly recognizable. In contrast, our approach is
designed to guide attention also for apriori unknown activities and
complex events that occur in the context of video surveillance.

The system by Höferlin et al. [6] utilizes trajectories of mov-
ing objects extracted from video data to support situational aware-
ness of surveillance operators via a spatial auditory display. In
their approach, each object trajectory is mapped to an auditory
icon that moves along the object’s trace in 3D sound space. By
user interaction, the virtual listener’s position and other parameters
can be adopted to suit the monitored site. Further, the selection of
auditory icons for each object class help produce a natural sound
environment. The approach presented in this paper, follows a dif-
ferent path: one of the major differences is that we do not rely on
high-level computer vision techniques, such as object tracking and
classification, since these methods come with high computational
cost and are not fully reliable [15]. Another difference is that we
intend to avoid the mental reconstruction of the video from the
auditory display. Such a translation from auditory stimulus to fa-
miliar mental representation was observed many times [16]. How-
ever, in the case of video sonification, maintenance of an imagi-
nary video representation can be mentally demanding. We aim for
a rather abstract auditory representation of relevant information
and rely on the excellent capabilities of human auditory percep-
tion to detect deviations in the acoustic pattern. Although we aim
for interpretability of the sonification, our primary goal is to enable
auditory change detection on signal level, not on semantic level.

1.2. Contribution

According to the problem definition and related work, we aim for
an auditory display meeting the following requirements:

• usage of reliable low-level computer vision features,
• comprehensive and abstract auditory display to leverage audi-

tory change detection on signal level,
• synthesis of non-obtrusive continuous soundscape, and
• interpretability of the sonification to guide visual attention.

In the remainder of the paper, we present a novel parameter
mapping sonification that copes with these requirements. This
is our main contribution. As a major aspect, we tackle the often
discussed issue of finding a trade-off between interpretability and
aesthetics of sonification using non-linear optimization. Further,
we evaluate our sonification with respect to its interpretability and
support of situational awareness in video surveillance.
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2. SONIFICATION DESIGN

To support the situational awareness in video surveillance, we pro-
pose a sonification system with the structure outlined in Figure 2.
Besides the video display, users are provided with an auditory dis-
play based on low-level features extracted from video. These fea-
tures are subsequently mapped to sonic properties of the continu-
ous sonification. Our research prototype uses the CSound toolkit1

for offline sound synthesis. Besides adjustment of a small set of
parameters to select precision and mapping range, the auditory dis-
play does not need user intervention. Adapted values are not di-
rectly applied to the sonification, but used as input for parameter
optimization to find an appropriate mapping with respect to aes-
thetic and psychoacoustic constraints of the auditory system.

2.1. Data Preparation

Since we assume that only changes in video data are relevant for
surveillance monitoring, we use as basic feature the dense optical
flow field of two subsequent video frames. We extract the optical
flow using the global method of Horn and Schunck [17]. The ad-
vantage of extracting dense optical flow over fast to compute frame
differences is the availability of size and velocity information of
the moving objects. For frame differencing this information is not
available in the case of homogeneous colored objects, whereas the
global optimization method of Horn and Schunck fills in the miss-
ing flow information by a regularization term. In addition to the
motion vectors, we calculate a running average background model
for foreground segmentation of the video data. This step is neces-
sary, since optical flow calculation is prone to errors in the pres-
ence of noise and coding artifacts. Hence, motion vectors calcu-
lated in background regions are neglected for further processing.
This approach helps reduce background noise and thus decrease
obtrusiveness of the auditory display.

Next, we split the optical flow field into non-overlapping seg-
ments aligned in a regular grid as illustrated in Figure 1. For each
segment, we calculate the average length of the contained motion
vectors. This value represents the extent of activity for each seg-
ment. Please note that both the number of moving pixels and the
length of the motion vectors (i.e., the velocity) influence the activ-
ity value. Hence, there are three properties for each segment to be
mapped to auditory parameters: the segment’s horizontal coordi-
nate, its vertical coordinate, and its activity.

2.2. Mapping Function

There are many possible design choices for mapping the segment
properties to sound parameters. However, preliminary experi-
ments considering the users’ expectations suggest the use of:

• stereo panning representing horizontal position component,
• frequency to represent the vertical component of position (ris-

ing frequency with increasing position), and
• amplitude to represent activity (low activity - soft sound).

Stereo panning and frequency dimensions are quantized,
whereas amplitude is a continuous parameter. The directional in-
formation of motion in the segments is neglected. However, the
direction of object movement is indirectly encoded in the temporal
transition of the amplitude level between neighboring segments.

1CSound homepage: http://www.csounds.com/

Figure 2: Data flow of the auditory display. Blue boxes depict
data preparation steps by computer vision techniques. The yel-
low boxes represent the steps necessary for the parameter mapping
sonification, described in this paper.

From another point of view, each segment can be regarded to play
its own instrument that is defined by stereo panning and frequency.
If a segment shows no activity, the according instrument is muted.
The complete orchestra of instruments represents the auditory dis-
play. Without aggregation to segments, motion features would be
too sensitive to noise, or features of higher processing levels (e.g.,
trajectories) have to be used, which are prone to errors. Segmenta-
tion allows efficient sonification of low-level feature.

A key requirement of the auditory display is to convey the
relevant information in an interpretable fashion. Additionally, the
sonification has to be aesthetically pleasing to be non-obtrusive
and broadly accepted [16]. To achieve these goals, we account for
psychoacoustic aspects when defining the mapping and transfer
functions. A formative user study (see Section 3) emphasized the
importance of psychoacoustic aspects.

Pure tones are perceived to be unnatural, thus we use complex
tones to increase natural sound sensation. For sound synthesis,
each segment is represented by a periodic waveform synthesized
by an additive synthesis model with 8 harmonics. Hence, the num-
ber of harmonic components we consider in the experiments is
NH = 8. Please note that we add only overtones that are whole
multiples of the fundamental frequency in order to maintain pitch
perception of complex sounds. Users can adjust the numbers of
harmonics, if desired. However, although natural sounds gener-
ally have an arbitrary number of harmonics, their amplitude drops
fast with higher harmonics. Thus, only few are audible and neces-
sary for an almost natural sound sensation. By using a sine wave
generator instead of MIDI sonification, we are able to tune the per-
ceptual parameters of the sonification in much more detail, as de-
scribed below. Employing the orchestral metaphor again, data fea-
tures of each segment are mapped to perceptually calibrated mini
instruments as proposed by Grond and Berger [18]. By adjusting
the number of segments in each direction (horizontal and vertical),
the users can trade the resolution and precision of the sonified in-
formation for the complexity of the produced soundscape.

The temporal sampling rate of the continuous sonification is
set to the temporal resolution of the video data, and phases of the
sine waves are adapted according to this rate to produce the im-
pression of a continuous signal. We assume that the temporal sam-
pling of online surveillance footage ranges from 15 fps to 30 fps.
Hence, the temporal resolution of the human auditory system is ca-
pable of detecting sound changes between two successive frames.
Typically, the temporal resolution for auditory change detection is
beyond 20 ms, even for low frequencies (cf. [19]).
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Further, we describe how we selected the transfer functions for
each mapped parameter. To consider aesthetics and interpretabil-
ity, we map the data properties not directly to physical sonic prop-
erties, but introduce an intermediate perceptual mapping layer.

2.3. Amplitude Mapping

To achieve linear scaling of amplitude that is necessary to interpret
the information conveyed by the auditory display in the right way,
we linearly map the activity value of a segment to the perceptual
measure of subjective loudness S (sone at 1 kHz). Thereby, we
scale the activity level to the sone interval that fits into the user-
defined volume range. For the evaluation in Section 3, this range
is fixed to the interval of 20 to 80 dB in the accordingly defined
interval of frequency. Next step is to map loudness S to loudness
level L (phon at 1 kHz) according to the non-linear relation [20]:

L =

�
40 + 10 ld(S), if S > 1

40S0.379, else (1)

Finally, we map the loudness level with respect to equal-loudness-
level contours to sound pressure level (dB-SPL); this value is di-
rectly fed into the CSound system and represents the amplitude of
the fundamental frequency. Amplitudes of overtones are adapted
accordingly and normalized by CSound. An analytical expression
of equal-loudness-level contours fitted to experimental data was
developed by Suzuki and Takeshima [21].

Obviously, this approach is only a rough approximation to ad-
just the perceived loudness of a data segment. We neglect any in-
fluence of overtones of complex sounds. Furthermore, dependen-
cies between the complex tones of different data segments are not
considered, too. A more elaborated loudness model will be con-
sidered in future work, a thorough evaluation of advanced models
was presented by Skovenborg and Nielsen [22].

2.4. Stereo Panning

A segment’s horizontal position component is a linearly mapped
between left and right channel and scaled to fit the complete pan-
ning range. The energy of the panned signal is kept constant with
the source signal. Note that we do not account for directional de-
pendencies of loudness and pitch perception, since we expect the
sonification to be used with headphones.

2.5. Frequency Mapping

To map the vertical position component of a segment to frequency,
we have to consider different, sometimes opposing objectives.
First, we require a linearly perceived increase of frequency for in-
terpretability reasons; while for a pleasing sonification the tone
heights of two segments should match consonant intervals. These
criteria have to be met under the constraint of a limited frequency
spectrum to be used. And finally, frequencies should increase
monotonically with a step size of at least the perceptual just no-
table difference.

To find the most suitable distribution of frequencies Φ (or-
dered increasing set of fundamental frequencies in Hz) that copes
with these competing goals, we formulate a cost function Ψ to be
minimized by gradient descent in combination with simulated an-
nealing as follows

Ψ(Φ) = γl Ψl(Φ) + γd Ψd(Φ) + γo Ψo(Φ) + γr Ψr(Φ) (2)

Figure 3: Perceived dissonance of pure tones as a function of the
ratio of the critical bandwidth. Experimentally obtained disso-
nance function by Plomp and Levelt [24] (dashed line), Benson’s
approximation [25]: 4|x|e1−4|x| (green), Sethares’ approximation
cited in [25] (blue), and our fitting in Equation 5 (red).

with γx being a user-defined factor to emphasize particular cost
terms Ψx that are described in the subsections below. Note that
we require the cost terms Ψx to be differentiable, since we use
gradient descent. Further, we found that an equal distribution of
the N fundamental frequencies ϕ ∈ Φ in the user-defined fre-
quency range is a suitable initial value to start the gradient descent.

Linear Scaling. The first cost term Ψl represents the linearity of
the perceived pitches: a property that is important for understand-
ing the conveyed information. To rate the ordered set of fundamen-
tal frequencies Φ, we map each of the frequencies ϕi ∈ Φ (in Hz)
to Zwicker’s bark scale (critical bandwidth rate, CBR), a percep-
tual scale of pitches that accounts for the place-spectral analysis of
the cochlea [23]:

CBR(ϕ) = 13 atan(0.00076ϕ) + 3.5 atan(ϕ/7500)2 (3)

As a natural measure of linearity, we take the second (smaller)
eigenvalue λ2 of the 2× 2 covariance matrix of the set of vectors

��
CBR(ϕ1)

1

�
,

�
CBR(ϕ2)

2

�
, . . .

�
CBR(ϕN )

N

��

Therefore, we assume that at least a minimum of linearity
already exists. Further, we assume the influence of sound pres-
sure level on the perceived pitch to be already compensated by
loudness-based amplitude mapping.

Consonant Intervals. To improve acceptance and reduce obtru-
siveness and annoyance of our sonification, we account for aes-
thetics and musicality in terms of consonant intervals. Consonant
complex tones exhibit harmonic vibration ratios of their partials
(integer multiples) and thus sound pleasant to most people. As
measure of consonance of the complex tones of the ordered set
of fundamental frequencies Φ (in Hz) with NH harmonics, we ap-
ply the method reported by Plomp and Levelt [24]. The dissonance
costs Ψd therefore represent the sum over the degree of dissonance
of two successive fundamental frequencies ϕi,ϕi+1 ∈ Φ (in Hz)
with their overtones:

Ψd(Φ) =
1

N2
H
(N − 1)

N−1�

i=1

NH�

j,k=1

d

�
|jϕi − kϕi+1|

CB(
√
jkϕiϕi+1)

�
(4)
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Table 1: Coefficients for sine approximation of dissonance term.

i α β γ
1 2.035 4.340 -1.387
2 3.424 5.662 0.4757
3 1.680 6.469 2.873

The dissonance function d is a perceptual measure that was
experimentally derived by Plomp and Levelt [24]. Although sev-
eral analytical approximations have already been published, we
propose a more precise fitting on sine basis (see Table 1 for coeffi-
cients, and Figure 3 for a comparison with the original data):

d(x) =

� �3
i=1 αi sin(βix+ γi) , if x ≤ 1.2

d(1.2) , else (5)

The function CB(fc) provides the critical bandwidth of the
center frequency fc =

�
ϕ�ϕ of the two compared harmonics ϕ, �ϕ

according to Zwicker and Terhardt [23]:

CB(fc) = 25 + 75(1 + 1.4 · 10−6f2
c )

0.69 (6)

Finally, Ψd is normalized to fit the interval [0, 1].

Frequency Order. It is a main requirement of our approach that
frequencies in the ordered set Φ increase monotonically. Hence,
we have to assure that this criterion is met for all possible solutions
of the optimization. The term Ψo insures this by penalizing pairs
of similar fundamental frequencies in Φ by the sum

Ψo(Φ) =
1

N − 1

N−1�

i=1

�
0.056CB(ϕi)
ϕi+1 − ϕi

�α

(7)

Monotonicity is enforced by the cost function approaching infinity
as differences of neighbored frequencies approach zero. Each
term of the sum becomes 1 if the frequency differences reach the
frequency difference limen, which is about 1/18 ≈ 0.056 times
the critical bandwidth [19]. The parameter α > 0 is used to adjust
the steepness of the function.

Frequency Range. The frequency range available for mapping
is limited. Obviously, the human auditory system is restricted to
the interval between 20 Hz and about 20 kHz. Furthermore, users
may want to narrow this interval even more, for example to the
range of musical pitch perception (50 Hz to 5 kHz). The cost term
Ψr judges the fitness of Φ to match the user-defined frequency in-
terval. Since we presume a monotonic increase in frequency (see
section ”Frequency Range”) , we only have to compare the first
and the last fundamental frequency (ϕ1,ϕN ) with the lower and
upper frequency limits (fl, fu), respectively. However, we allow
the range to exceed these limits at the penalty of rising Ψr , repre-
sented by sigmoid function terms

Ψr(Φ) =
1

1 + e
6+

12(fu−ϕN )
CB(fu)

+
1

1 + e
6+

12(ϕ1−f
l
)

CB(f
l
)

(8)

To account for different severities when exceeding the limits at
different frequencies (violation of 20 Hz of a limit at 50 Hz is more
severe than it is for a limit at 10 kHz), the sigmoidal cost function
is scaled to the critical bandwidth (cf. Equation 6) at the particular
limit frequency.

3. EVALUATION

We conducted two separate user studies to cover two different
purposes. The first user study was conducted during an early
stage of development and had a formative character. The goal
of such formative evaluation is to provide “insight into which
problems occur and why they occur”, as well as to provide
design feedback [26]. The second user study was designed as
a validating user study and conducted in order to evaluate the
effectiveness of our sonification approach. The study procedure,
as well as the experimental setup, and given tasks were identical
for both user studies. However, the participants and the presented
auditory stimuli differed between the two user studies. Due
to space constraints, we only provide a brief conclusion of the
formative user study results here, and include, in exchange, a
more detailed discussion on the results of the validating user study.

Experimental Setup. The experiments were conducted in a
laboratory insulated from auditive distractions. The audio samples
were presented with stereo headphones with volume control.

Stimuli and Tasks. The user study consisted of six sets (S1 –
S6) of stimuli and tasks with the purpose to answer different re-
search questions. Auditory stimuli created from video data were
presented, without showing the according videos. For S1 – S4, ar-
tificial videos with moving textured hexagons were rendered (cf.
Figure 4(a)). For S5 – S6, surveillance footage was used (cf. Fig-
ure 4(b) and (c)). Stimuli with video data are available at our
homepage2.

S1: Research Question: How well can object movement be de-
tected and localized from sonification? (Accuracy)
Stimuli: Five stimuli, each with a single moving object.
The object movement describes a rhombus, circle, two
semicircles with an interruption, an eight, and a triangle.
Task: Sketching trajectories.

S2: Research Question: How well can similar object move-
ments be distinguished? (Discrimination)
Stimuli: Six pairs of stimuli. Each pair consists of two ob-
jects with similar movement trajectories presented in suc-
cession. The pairs of object movements describe the fol-
lowing patterns: line (back and forth) – with varying slope;
circle – var: radius; line (one direction) – var: acceleration;
circle – var: object size; rotating object – var: object posi-
tions (long distance); rotating object – var: object positions
(short distance).
Task: Sketch trajectories.

S3: Research Question: How sensitive is the sonification to
distractors and noise? (Distraction)
Stimuli: Three stimuli, each including the movement of a
single object. The applied distractors are Gaussian noise
(50% normally distributed luminance changes), an image
of cluttered background, and MPEG4 coding artifacts (also
with cluttered background image).
Task: Sketch trajectories.

S4: Research Question: Is it possible to detect and distinguish
several simultaneously occurring objects? (Distraction)
Stimuli: Three stimuli, showing (1) two coexistent objects,

2http://www.vis.uni-stuttgart.de/projekte/
visual-analytics-of-video-data/sonification.html
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(a) (b) (c) (d)

Figure 4: (a) Artificial video showing a hexagonal object); (b) / (c) screenshots of stimuli S5 / S6 that were provided as context in the user
study; (d) template used in the study to sketch recognized trajectories. The blue circles denote the position and order of the calibration
objects in the context cue. The grid shows the granularity of the auditory display used in evaluation.

(2) three coexistent objects, and (3) two coexistent objects,
where the second appears delayed.
Task: Sketch trajectories.

S5: Research Question: How well can object movement be de-
tected and localized in real surveillance footage?
Stimuli: One stimulus based on a video from the i-LIDS
multi-camera tracking scenario (duration 2:12 min). A con-
textual image of the video was presented along with the au-
ditory stimuli to facilitate interpretation (cf. Figure 4(b)).
Task: Sketch trajectories.

S6: Research Question: Does the sonification allow users to
detect new and abnormal patterns?
Stimuli: One stimulus based on video [27] showing a
pedestrian walk (duration: 8:02 min). Additional to the
sonification, a context image was provided to facilitate in-
terpretation (c.f. Figure 4(c)). The first 1:30 min of the
stimulus was provided without task in order to learn audi-
tory patterns of normal behavior.
Task: Identification of abnormal behavior.

Study Procedure. First, subjects were asked for basic informa-
tion, such as their age and profession, followed by an audiometry3

that took about 5 min. Thereafter, they completed a PowerPoint
tutorial (duration ∼10 min) that explained the approach and in-
troduced the parameter mappings with the aid of artificial sample
videos and their sonifications. After the tutorial, the participants
were asked to answer a control question to check whether they
understood the technique or not.

Then, we continued with the main evaluation that consisted of
the six sets of tasks (S1 – S6) and took about 40 min. Preceding to
each stimulus, a context cue [16] was provided to enable the par-
ticipants performing the interpretation tasks. The context cue was
the sonification of a calibration pattern that successively showed a
rotating textured object at the top left, bottom left, top right, and
bottom right. After the context cue, an earcon was played that
marked the beginning of the actual stimulus. For S1 – S4, the
participants sketched the recognized trajectories on a paper tem-
plate (cf. Figure 4(d)) while the sonification was played. Acceler-
ation/deceleration had to be marked in green, changes of the object
size in red. Further, the trajectories had to be numbered according
to their order of appearance. Right after each stimulus, participants

3Applied audiometry: HTTS-Hörtestprogramm 2.10. URL:
http://www.sax-gmbh.de/htts/httsmain.htm

had the option to correct and enhance their sketch by drawing the
recognized trajectories into a second template.

For S5, each recognized trajectory had to be drawn on a sepa-
rate template, the study operator noted the times when trajectories
were identified.

For S6, the subjects had to verbally express recognized events.
The study operator noted the events including their times.

3.1. Formative User Study

Subjects. Fifteen participants (average age 29.1 years, mini-
mum 27 years, maximum 37 years). Sex was not considered
as confounding factor for this study. Twelve participants were
students or employees of our university, three participants were
professional security guards. Subjects were volunteers and not
paid for participation. The audiometry showed that all participants
had normal hearing.

Study Results. The formative user study showed that the early
version of the sonification was capable of communicating the
coarse locations of the objects as well as their trajectories. The
study also unveiled that aesthetics and the psychoacoustic of the
sonification are critical and have to be taken into account.

3.2. Validating User Study

Subjects. Fourteen participants (average age 32.9 years, min-
imum 27 years, maximum 57 years). Sex was not considered
as confounding factor for this study. Thirteen participants were
students or employees of our university. One subject was a
physician. Subjects were volunteers and not paid for participation.
The audiometry showed that all participants had normal hearing.

Study Results. To judge and compare the accuracy of the sketched
trajectories, we consider their start position, end position, and
length. The positions are quantized on a lattice with 10 cells for
each dimension (x and y, c.f. Figure 4(d)). We chose this gran-
ularity according to the expected accuracy and to limit the evalu-
ation effort. We use the Euclidean distance between the cells of
the sketched trajectory and the trajectory from ground truth (GT).
The distance is normalized to [0,1] by division of the maximum
cell distance (i.e.,

√
102 + 102 ≈ 14.14). To compare lengths be-

tween a sketched trajectory and a GT trajectory, we count the tran-
sitions between the cells, calculate their difference, and normalize
this difference by division with the GT length. A missed trajectory
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Figure 5: Boxplots of the user study results. Accuracies of the
tasks are visualized as relative distances [0,1] to the ground truth.
Blue boxplots represent distances of a single parameter (start po-
sition, end position, or trajectory length), while yellow boxplots
show the combination of the parameters’ distances. S3.x denotes
the xth stimulus of S3. First column: general accuracies of par-
ticular parameters; second column: accuracies at distinguishing
similar object movements; third column: accuracies of start and
end positions for all artificial stimuli; fourth column: sensitiveness
of the accuracies with respect to distractors.

is penalized with the maximum distance 1 for each parameter. To
summarize the accuracies, a combination of the relative distances
of the parameters is calculated

�
dstart+dend+dlength

3

�
.

The study results of S1 – S4 are depicted in Figure 5. The
results of the task and stimuli set S1 show that localization of the
start (median distance: 0.16) and end position (median distance:
0.21) is possible. Moreover, the length of the trajectories can also
be estimated roughly (median distance: 0.23).

The results of S2 show that it is difficult to distinguish similar
trajectories. Figure 5 shows that the combined detection accura-
cies of both the first (median: 0.33) and the second (median 0.39)
object of the pair are worse than those of S1 (median: 0.24). This
may have two reasons: First, only a rough localization of a soni-
fied trajectory is possible. Subjects that hear two similar trajec-
tories focus on the movement differences and overestimate them.
Second, the context cue is likely to be remembered less accurately
for the second object. This is indicated by the worse results of
the object appearing second. Another observation made during the
study point into the same direction: the accuracy measurements of
the start and end positions for all artificial video stimuli S1 – S4

(cf. Figure 5 (third column)) exhibit that end positions are gen-
erally detected less precisely (median: 0.30) than start positions
(median: 0.22).

The localization of trajectories distracted by a background im-
age (S3.2, median: 0.19) or a background image with standard
MPEG4 artifacts (S3.3, median: 0.28) are quite robust (cf. Fig-
ure 5, median of S1 (without distraction): 0.24). Contrary, strong
noise (S3.1) hinders motion detection and consequently highly in-
terferes with the sonification approach (median: 0.39). Detection
of several trajectories simultaneously emerged to be most chal-
lenging: sonifying multiple trajectories at the same time drastically
reduces localization accuracy (median: 0.47). While most of the
subjects detected the existence of two trajectories in S4.1 and S4.3

(89%), it was nearly impossible to identify that there were three
trajectories present in S4.2: only one of the fourteen participants
was able to detect it. In S4, S4.3 performed best (median 0.28): it
is easier to localize two trajectories when they appear temporally
shifted.

Figure 6: Example of heatmaps for the first pair of stimuli of S2.
The frequency of how many sketched trajectories traverse a region
is mapped to saturation and denoted by the numbers. The black
borders denote ground truth trajectories. Left: sonification with-
out optimization, measured during the formative study; right: pro-
posed sonification with optimization; top: first stimulus; bottom:
second stimulus with a slightly varied slope.

Figure 6 shows an example of a heatmap with the results of
S2.1 of the formative study (left) and the validating user study
(right) Obviously, sonification of trajectories is more difficult to
interpret, if psychoacoustic and aesthetic are not considered. As
Figure 6 exhibits, perceptually correct scaling is essential to com-
prehend the conveyed information. Without the proposed opti-
mization, perception among subjects seems to be more diffuse.

The results of S5 show that it is – with some limitations –
possible to detect and localize trajectories in surveillance footage.
The participants were able to sketch most of the trajectories (mean:
0.79, stddev: 0.06) qualitatively correct. It is further possible to
detect abnormal behavior (mean: 0.75, stddev: 0.07) due to irreg-
ularities in the auditory pattern (S6). Moreover, the false detection
rate is quite small: on average, there was one false positive detec-
tion for each positive example in GT.

Please note that the time the subjects had to learn the standard
pattern (1:30 min) as well as the time to learn the video sonifi-
cation was very short. The effectiveness of the sonification can
be expected to be much better when training time increases: it
is likely that surveillance operators listening to the sonification for
months will be able to identify smaller variations and classify them
accordingly.

4. DISCUSSION AND CONCLUSION

In this paper, we introduced a sonification for video data that relies
on parameter mapping of quantized optical flow fields. The soni-
fication indicates activity in the video by an abstract sonic pattern
with the aim to support situational awareness in the surveillance
context. Besides this, we sketched a way to find an optimal bal-
ance between the partially opposing goals of an interpretable and
aesthetically pleasing sonification. A user study showed that par-
ticipants are capable of identifying abnormal events by recogniz-
ing relevant deviations of the presented soundscape. These results
are a requisite to support surveillance operators and indicate that
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the proposed sonification can be used as component to support sit-
uational awareness. The evaluation also exhibited the limitations
of our approach, such as constraints on detection of multiple tra-
jectories or accuracy limits for the estimation of fine movement. A
consequence of these results may be the application of such soni-
fication as supportive display.

Future work will extend the mapping by yet neglected psy-
choacoustic aspects, such as a more sophisticated loudness model
that accounts for masking of complex tones. Besides this, opti-
mization of other psychoacoustic aspects should be investigated,
such as auditory channel separation, scalability to many displays,
and change deafness.
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