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ABSTRACT

An implementation of vector-based amplitude panning (VBAP)
for spatial display of sonified data is presented. The proposed
method offers an implicit conversion from Spherical to Cartesian
coordinates thus being particularly well suited for auditory dis-
play. Two techniques from computer graphics are adapted in order
to predefine an optimum set of speaker triplets and perform the
amplitude panning in real-time. Furthermore, the consideration of
time delay from a virtual sound source to actual speakers is in-
corporated. Due to the geometrical nature of this procedure, the
resulting system can be easily visualized by the graphic library
OpenGL. Using this library I provide users with an intuitive con-
trol interface. A prototype is demonstrated that enables a user to
compose a trajectory of sound in three dimensional space.

1. MOTIVATION

1.1. VBAP: Vector-Based Amplitude Panning

Vector-based amplitude panning (VBAP) [1] is one of several non-
standard methods used to render virtual sound sources in 3D sound
field using multiple speakers. VBAP is distinct in its clustering
of adjacent speakers into triplets in which individual gain factors
are calculated for each speaker in order to translate the sound into
perceptually compelling spatial auditory cues.

The conventional VBAP method includes the following steps:

a) Define speaker triplets.

b) Position a virtual sound source (a new vector P ) in the
space.

c) Select a triangle (a speaker triplet) intersected by a vector
between a sound source (P ) and the position of listener (L).

d) Calculate 3 gain factors from each speaker on the triplet.

e) Interpolate gain factors from previous ones to new ones.

f) Iterate through steps b - e as needed.

Although a few implementations of VBAP have been adapted
since the method’s introduction in 1997 [2] [3], the procedure de-
scribed here substitutes steps a), c) and d) with techniques from
computer graphics. A novel approach emerges with a more intu-
itive visual interface and enhanced computational efficiency. The
prototype transforms a spherical system (ambisonics and VBAP)
into the Cartesian coordinate system, the one used by standard
graphic libraries. This transformation bears a number of signifi-
cant advantages including:

• integration with conventional graphic libraries, such as
openGL and 3D vector calculation,

• a mapping paradigm that integrates well with data visual-
izations,

• an intuitive means of positioning and moving sound in vir-
tual 3D space.

We describe Implementation of two algorithms adapted from
3D graphics, Quickhull [4] and Ray-Triangle intersection [5] fol-
lowing a description of Field 8 a multi-touch interface for 2D pan-
ning.

1.2. Field 8, a multi-touch interface for 2D panning based on
DBAP

Field 8 is a control user interface designed for distance based am-
plitude panning (DBAP) [6]. It provides an intuitive control in-
terface on a multi-touch screen implemented on the iPad . Un-
like other user interfaces of sound spatialization for VBAP or Am-
bisonics [7], the real-time user interaction and the rich visual feed-
back are focal points of the interface that allows users to draw
multiple paths of sound motion with up to eight fingers. The site-
specific prototype design for the CCRMA listening room [8], en-
compassing the user interface on iPad and a spatialization server
built with ChucK audio programming language [9],provided a
suitable environment to explore the sonic space in a 2D plane cre-
ated by 8 speakers at ear level. The prototype has been successfully
used in various performance contexts and compositions. Field 8 is
also useful for exploration and rapid design of appropriate scaling
and mapping methods for auditory display. Expanding this poten-
tial to 3D auditory display using more than 8 speakers is clearly
the next step.

1.3. Considering Efficiency and Usability

Adapting Field 8 to 3D space using more than 8 speakers presents
a number of logistical problems. The algorithm for DBAP should
be redesigned to update an arbitrary number of gain controllers
(in the site specific case cited here, 22 gain controllers) every few
milliseconds. Deploying multiple sound sources will multiply the
number of gain controllers. For example, a DBAP system requires
to update 176 gain factors for every sample when there are 8 sound
sources in motion. Furthermore, the system must calculate 176
distances between 3D points to get each gain factor meaning that
the process involves 176 square-root operations in every iteration.
A more efficient approach was needed to build a real-time spatial-
ization system capable of handling multiple user interaction. The
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Figure 1: User interface of Field 8 and CCRMA listening room

VBAP concept of grouping three proximate speakers proved a vi-
able option which achieved a decent level of interactivity.

To summarize, the motivation for this work is twofold: devel-
oping a new panning system that

• can move multiple sound sources in a highly efficient fash-
ion, and

• enables the user to design sound motions in an intuitive and
expressive way.

2. SYSTEM DESIGN

2.1. Phase 1: Triangulation of Speakers

The operation of VBAP includes two separate procedures; the first
phase is organizing the physical position of speakers in the space
[2]. This procedure obtains an optimum set of non-overlapping
speaker triplets(triangles), thus reducing the computational load by
dealing with only 3 speakers at any given moment to calculate the
panning. Unless the physical configuration of speakers is changed,
the first phase needs to be updated only once.

Triangulating contiguous speakers in 3D space can be done in
several different ways. Although the original source code uses tri-
angulation [10] there was no specification in the original VBAP
algorithm and subsequent papers of how it was implemented. My
approach on this grouping task is to use a convex hull algorithm

Figure 2: Using Quickhull algorithm to triangulate speakers

called Quickhull3D [4]. The convex hull of a set of points is the
smallest convex set that contains the points. The algorithm orig-
inated from the field of computer graphics and is widely used to
build a 3D mesh with a minimum set of triangles from an arbitrary
number of vertices. (See figure 2.)

The Quickhull algorithm is highly optimized, so inserting a
new vertex into the existing 3D mesh to build a new set of trian-
gles on the fly is possible. Considering the largest speaker system
in the world is using less than 200 speakers and the Quickhull al-
gorithm can handle more than 200 vertices in real-time fashion,
this algorithm is a viable way to triangulate speakers.

2.2. Phase 2: Ray-Triangle Intersection

The original VBAP algorithm calculates gain factors from a se-
lected triplet by matrix operation. However, another method from
computer graphics can be deployed to get gain factors. The Ray-
Triangle intersection algorithm [5] is a 3D vector operation to cal-
culate not only intersection of a ray vector and a triangle, but also
the point of intersection. (See figure 3.)

If the position of a virtual sound source exists as a 3D point
in the space, than we can assume a vector from the point of ori-
gin to the point of the sound source. If the physical configuration
of speakers is a spherical mesh of triangulated speakers, the infi-
nite extension of this vector intersects only one triangle (speaker
group). This is particularly useful for VBAP operation because the
Ray-Triangle intersection algorithm can infer an intersection point
on a triangle, and the distances between 3 speakers of the triangle
and this point can be calculated.

2.3. Relative Loudness and Time Delay

The Ray-Triangle intersection algorithm yields useful parameters.
Rendering a realistic 3D auditory display is possible by using the
loudness ratio between 3 speakers as well as the time delay esti-
mated from the distance between a sound source and the speakers.
Parameters from the algorithm are listed here ( see also Figure 4 ).

a) A gain factor estimated from the distance between a sound
source and the listener: P-L (in figure 4-(a))

b) 3 loudness ratios from distances between 3 speakers and a
intersection point: S0-I, S1-I, S2-I (in figure 4-(b))

c) 3 delay times estimated from distances between 3 speakers
and a sound source: S0-P, S1-P, S2-P (in figure 4-(c))

The system yields gain factors for 3 speakers by summing all 3
distances and dividing each distance by the sum as described in b).
For example, when the intersection point moves to the exact same

Figure 3: Ray-Triangle Intersection algorithm to select a triplet

Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, June 18-21, 2012

2



!"#$%&'()*%+,(
)*%#-.(/01

"+$.#).-$"*+(
2*"+$(/31

'")$.+.#4)(
2*"+$(/51

(a) intersection point

!"#$%#&'('
)*(+

!"#$%#&','
)*,+

!"#$%#&'-'
)*-+

./0#&!#10.2/'
"2./0')3+

(b) distance from 3 speakers

!"#$%&'()*%+,(
)*%#-.(/01

)2.&3.#(4(
/541

)2.&3.#(6(
/561

)2.&3.#(7(
/571

(c) distance from source

Figure 4: various relationships from intersecting algorithm

location as one of the 3 speakers, the gain factor for the speaker
becomes 1.0 reducing the gain factors of the other two speakers to
zero. In most cases, the intersection point moves from one triangle
to another by passing through their shared edge. When the inter-
section point is located precisely on the edge, the sum of relative
loudness of the two speakers on that edge will be 1.0. This will
ensure the seamless transition when the intersection point moves
across two triangles. This is partly similar with the DBAP method;
however, it differs in its use of 3 speakers at any given moment.
Also the distance between the listener and the sound source affects
the overall loudness of the sound.

The original implementation of VBAP lacks the notion of time
delay between a virtual sound source to selected speakers. Simply
by calculating distances between a sound source from speakers in a
selected group, the system can simulate time delay introducing the
subtle change of timbre that arises from phase differences. Such
concepts are integral to Wave field Synthesis.

Here we encounter a common obstacle in artificial spatializa-
tion methods: When the position of a virtual sound source is in-
side of a sound field the time delay of speakers will be a negative
value, which is impossible in the real world, causing ambiguity in
localization of the sound. Thus, this problem still remains in the
system.

3. IMPLEMENTATION OF PROTOTYPE

A prototype built with two programming languages, Processing
and ChucK, is demonstrated to test the feasibility and possible en-
hancements. Processing [11] functions as a core system that cal-
culates the entire panning process and sends the result to ChucK
[12] via an OSC(OpenSound Control) [13] connection. The VBAP
object in ChucK renders a sound source in the space according to
the data from a speaker triplet delivered from Processing. In this
section, I describe design choices and details on implementation.
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Figure 5: 2-Tier structure: Processing and ChucK via OSC

3.1. Processing: Spatialization Engine and User Interface

Processing is a visual programming language built for media arts
and the classroom setting. It is widely used for designing pro-
totypes or creating visual arts. One of its benefits is a large set of
libraries that can be deployed with minimum effort. It is especially
helpful to visualize data structures for better understanding.

The prototype implements Processing mainly because it has a
nice library of vector calculation and a built-in OpenGL support.
It significantly cuts the development time. A visualization is in-
herently correlated with a graphical user interface; thus having a
compelling visualization is a clear advantage in terms of user con-
trol.

Since actual positions of speakers were initially in a spheri-
cal coordinate system, typical of a spatial audio setting, converting
them into Cartesian coordinate system was required. This can be
achieved when we understand that Zenith in a normal spherical
system and Elevation in spatial audio are two orthogonal descrip-
tions a vertical angle. This conversion into a Cartesian system en-
ables us to perform a vector operation, a great advantage in terms
of not only visualizing or animating what is happening, but also
calculating required values from geometry algorithms since stan-
dard graphic libraries are based on the Cartesian system.

The system reads the speaker position data, converts them into
Cartesian values, and then performs the quickHull3D algorithm to
get an optimum set of speaker triplets. Convex hulling is a type of
triangulation algorithm, that differs from the original triangulation
algorithm in VBAP. In my implementation, this step is done by
a library called newHull, a ported library from the original Java
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Figure 6: Sptialization Engine in Processing
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implementation of quickHull3D.
The quickHull object in Processing is designed to produce a

set of vertices(speakers), face indices (triangles, speaker triplets).
As a next step, the Ray-Triangle intersection algorithm checks

all the triplets with a vector between the origin(listener) and a
sound source. (See figure 4 (a).) The function that contains The
Ray-Triangle intersection algorithm is the core of the whole sys-
tem. It performs not only the essential visualization (lines between
selected speakers and a sound source) but also calculates all the
gain factors with delay times and sends OSC messages to the au-
dio server. The OSC message consists of 3 parameters: an ID of
a speaker, a gain factor(zero to one), and a delay time in millisec-
onds.

Moving a mouse can control the position of sound source. The
camera will gradually follow the position of the sound source as it
moves. Unlike other conversions made in the system, the move-
ment of the mouse in a 2D plane can be converted into a 2 angle
(Zenith, Azimuth) spherical coordinate system.

3.2. ChucK: Multi-Channel Audio Server

ChucK is a general-purpose programming language tailored for
computer music. [12] miniAudicle, the front-end of the ChucK
virtual machine, accelerated the prototype design process support-
ing concise programming and rapid experimentations. [14] A mul-
tichannel audio server is implemented in the ChucK language with
miniAudicle. This server features 22 channels of audio to repre-
sent one or multiple sound sources in this iteration of the proto-
type. As mentioned, this prototype was designed for the CCRMA
listening room. The site-specific details of this implementation are
described in the next section.

The OSC data stream is dispatched to a respective speaker by
the ID field. Note that the number of OSC packets is constantly 3
per speaker triplet and the Processing OSC sender will send these
9 numbers at every frame (about 16.7 milliseconds), 540 numbers
per second. This is 7.3 times better than sending OSC packets for
the entire set of 22 speakers with 3960 numbers for every sec-
ond. For example, Field 8 was designed to control 8 speakers
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Figure 7: Multi-Channel Audio Server in ChucK

with 1440 OSC packets per second and occasionally encountered
a bandwidth problem.

This is a significant advantage when detaching the control in-
terface into a wireless device such as an iPad allowing users to con-
trol positions of sound sources without sitting in front of a work-
station. The OSC packet size is consistently 9 numbers regardless
of the number of speakers to be controlled and this consistency is
possible thanks to the pre-configuration process of VBAP.

The interpolation between successive gain factors is per-
formed by the built-in features of the Envelope objects in ChucK.
The duration of interpolation is 16.7ms corresponding to the data
speed from Processing rendering a seamless transition from previ-
ous gain factors to next ones. Unit generators for delay(DelayA)
are interpolating delay times by default, so changing delay time
does not introduce discontinuity in samples.

4. THE CCRMA LISTENING ROOM:
SITE SPECIFIC SETUP

The CCRMA listening room is an experimental 3D space with 22
speakers and near-anechoic acoustics. The default 3D panning
scheme is 3rd order Ambisonics (3v3h) that utilizes 16 channels
of encoded audio streams. The OpenMixer [15] is a highly flexi-
ble software mixer running on the workstation. It transforms these
encoded 16 streams into 22 audio channels routing the 22 speakers
distributed in a sphere around the listener. The panning operation
is accessible through a few experimental panners in Ardour [16],
PureData [17] and SuperCollider [18].

As previously discussed, the prototype is tuned for the setting
of the CCRMA listening room. However, it does not mean that
the speaker position data is hard-coded in the software. Unlike the
Ambisonics implementation, the new VBAP implementation per-
forms triangulation on the fly from a text file with the positional
information (either Spherical or Cartesian format). Therefore, it
can be easily adapted to other venues without redesigning an en-
coder or a decoder.

The OpenMixer provides highly flexible audio input arrays in-
cluding netJack [19] or JackTrip [20]. The ChucK audio server
running on the laptop (MacBook Pro with a dual core CPU at

Figure 8: The CCRMA Listening Room
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Figure 9: Connection between Audio Server and OpenMixer

2.2Ghz) could transfer 22 audio streams through the netJack driver
without any problem.

5. CONCLUSION AND FUTURE WORK

In this study, I investigated a new VBAP implementation adopt-
ing two techniques from computer graphics to improve several as-
pects. The prototype presented the more intuitive and expressive
graphical control interface. The embedded transformation of co-
ordinate system creates synergies by tapping computer graphics
libraries resulting in a highly responsive control interface.

However, the early implementation of the application has lim-
itations. It does not have a sequencing feature yet, so it is not pos-
sible to record the trajectory of the sound. The system handles the
sound material as a sound entity, rather than under the framework
of ”audio track” like typical sequencers or digital audio worksta-
tions. As of now, this prototype features only real-time interaction.

Future goals include a more sophisticated graphical user in-
terface for 3D panning. This interface will include wireless and
touchscreen devices for portability. To facilitate the calibration
of varying speaker setups, I foresee using computer vision or 3d
camera technology to quickly convey measurements to the sys-
tem. Greater efficiency might be achieved if we integrate the pan-
ning operation into Chuck as a built-in unit generator. To mitigate
the challenges of diversified setups, we could have a standardized
method for notating speaker configurations. For example, the sys-
tem could be calibrated for a given space by downloading an XML
file from the website.
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